Back to Build/check report for BioC 3.18:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2023-06-06 11:00:42 -0000 (Tue, 06 Jun 2023).

HostnameOSArch (*)R versionInstalled pkgs
kunpeng2Linux (openEuler 22.03 LTS-SP1)aarch644.3.0 (2023-04-21) -- "Already Tomorrow" 4366
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

CHECK results for singleCellTK on kunpeng2


To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.

- Use the following Renviron settings to reproduce errors and warnings.

Note: If "R CMD check" recently failed on the Linux builder over a missing dependency, add the missing dependency to "Suggests" in your DESCRIPTION file. See the Renviron.bioc for details.

raw results

Package 1906/2199HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.11.0  (landing page)
Yichen Wang
Snapshot Date: 2023-06-05 06:35:06 -0000 (Mon, 05 Jun 2023)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: devel
git_last_commit: bce567d
git_last_commit_date: 2023-04-25 15:01:21 -0000 (Tue, 25 Apr 2023)
kunpeng2Linux (openEuler 22.03 LTS-SP1) / aarch64  OK    OK    OK  

Summary

Package: singleCellTK
Version: 2.11.0
Command: /home/biocbuild/R/R-4.3.0/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/R/R-4.3.0/site-library --timings singleCellTK_2.11.0.tar.gz
StartedAt: 2023-06-06 07:05:56 -0000 (Tue, 06 Jun 2023)
EndedAt: 2023-06-06 07:24:07 -0000 (Tue, 06 Jun 2023)
EllapsedTime: 1091.5 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R-4.3.0/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/R/R-4.3.0/site-library --timings singleCellTK_2.11.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.18-bioc/meat/singleCellTK.Rcheck’
* using R version 4.3.0 (2023-04-21)
* using platform: aarch64-unknown-linux-gnu (64-bit)
* R was compiled by
    gcc (GCC) 10.3.1
    GNU Fortran (GCC) 10.3.1
* running under: openEuler 22.03 (LTS-SP1)
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.11.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  6.8Mb
  sub-directories of 1Mb or more:
    extdata   1.6Mb
    shiny     2.9Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotScDblFinderResults   39.814  0.400  40.278
plotDoubletFinderResults 30.187  0.144  30.381
runScDblFinder           28.838  0.144  29.035
runDoubletFinder         22.884  0.043  22.964
importExampleData        18.867  0.579  25.373
plotBatchCorrCompare     13.018  0.116  13.151
plotScdsHybridResults    11.945  0.096  10.985
plotBcdsResults          10.293  0.116   9.401
plotDecontXResults        9.605  0.116   9.739
runDecontX                8.131  0.024   8.168
plotCxdsResults           7.734  0.035   7.779
plotUMAP                  7.587  0.136   7.730
plotTSCANClusterDEG       7.609  0.027   7.652
runUMAP                   7.566  0.016   7.588
detectCellOutlier         6.433  0.228   6.678
plotFindMarkerHeatmap     6.479  0.023   6.514
plotDEGViolin             6.130  0.056   6.196
plotEmptyDropsResults     6.065  0.008   6.084
plotEmptyDropsScatter     5.928  0.004   5.943
runEmptyDrops             5.522  0.000   5.530
plotDEGRegression         5.203  0.024   5.236
getEnrichRResult          0.334  0.004   7.891
runEnrichR                0.321  0.008   7.491
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ...
  ‘singleCellTK.Rmd’ using ‘UTF-8’... OK
 NONE
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.18-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.



Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R-4.3.0/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/R/R-4.3.0/site-library’
* installing *source* package ‘singleCellTK’ ...
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.3.0 (2023-04-21) -- "Already Tomorrow"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.187   0.021   0.196 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.3.0 (2023-04-21) -- "Already Tomorrow"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays

Attaching package: 'S4Arrays'

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Estimating GSVA scores for 34 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  24%
  |                                                                            
  |===================                                                   |  26%
  |                                                                            
  |=====================                                                 |  29%
  |                                                                            
  |=======================                                               |  32%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |===============================================                       |  68%
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |===================================================                   |  74%
  |                                                                            
  |======================================================                |  76%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%

Error in fitdistr(mahalanobis.sq.null[nonzero.values], "gamma", lower = 0.01) : 
  optimization failed
Estimating GSVA scores for 2 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================================================| 100%

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9590

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8042
Number of communities: 6
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 65 | SKIP 0 | PASS 220 ]

[ FAIL 0 | WARN 65 | SKIP 0 | PASS 220 ]
> 
> proc.time()
   user  system elapsed 
305.655   3.833 326.205 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0030.0000.003
SEG0.0030.0000.002
calcEffectSizes0.9980.0441.043
combineSCE1.9130.0882.004
computeZScore0.2960.0160.312
convertSCEToSeurat4.1310.1114.249
convertSeuratToSCE0.5290.0080.538
dedupRowNames0.0670.0000.067
detectCellOutlier6.4330.2286.678
diffAbundanceFET0.0510.0000.051
discreteColorPalette0.0070.0000.008
distinctColors0.0030.0000.002
downSampleCells0.9330.0200.955
downSampleDepth0.7590.0080.768
expData-ANY-character-method0.4230.0160.440
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.4850.0160.502
expData-set0.4690.0000.470
expData0.4290.0080.438
expDataNames-ANY-method0.4170.0160.434
expDataNames0.4110.0040.415
expDeleteDataTag0.0390.0000.040
expSetDataTag0.0280.0000.028
expTaggedData0.0290.0000.029
exportSCE0.0250.0000.025
exportSCEtoAnnData0.0800.0080.088
exportSCEtoFlatFile0.0860.0000.086
featureIndex0.0410.0040.045
generateSimulatedData0.0390.0120.052
getBiomarker0.0590.0000.060
getDEGTopTable1.1540.0561.211
getDiffAbundanceResults0.0420.0000.043
getEnrichRResult0.3340.0047.891
getFindMarkerTopTable4.2680.0444.320
getMSigDBTable0.0040.0000.004
getPathwayResultNames0.0290.0000.028
getSampleSummaryStatsTable0.4230.0040.427
getSoupX000
getTSCANResults2.4710.0722.551
getTopHVG1.1100.0401.151
importAnnData0.0010.0000.002
importBUStools0.3540.0080.364
importCellRanger1.4660.0041.478
importCellRangerV2Sample0.3530.0000.353
importCellRangerV3Sample0.5470.0040.552
importDropEst0.4250.0000.427
importExampleData18.867 0.57925.373
importGeneSetsFromCollection0.8980.0200.920
importGeneSetsFromGMT0.0720.0070.080
importGeneSetsFromList0.1680.0010.168
importGeneSetsFromMSigDB4.1720.1274.307
importMitoGeneSet0.0580.0000.059
importOptimus0.0020.0000.002
importSEQC0.3080.0080.317
importSTARsolo0.3220.0480.372
iterateSimulations0.4720.0320.505
listSampleSummaryStatsTables0.5000.0080.509
mergeSCEColData0.5980.0040.602
mouseBrainSubsetSCE0.0290.0000.028
msigdb_table0.0020.0000.002
plotBarcodeRankDropsResults1.1480.0201.169
plotBarcodeRankScatter0.9110.0120.924
plotBatchCorrCompare13.018 0.11613.151
plotBatchVariance0.4510.0000.452
plotBcdsResults10.293 0.116 9.401
plotClusterAbundance1.4160.0281.446
plotCxdsResults7.7340.0357.779
plotDEGHeatmap3.9680.0324.007
plotDEGRegression5.2030.0245.236
plotDEGViolin6.1300.0566.196
plotDEGVolcano1.4140.0321.449
plotDecontXResults9.6050.1169.739
plotDimRed0.3540.0000.354
plotDoubletFinderResults30.187 0.14430.381
plotEmptyDropsResults6.0650.0086.084
plotEmptyDropsScatter5.9280.0045.943
plotFindMarkerHeatmap6.4790.0236.514
plotMASTThresholdGenes2.0830.0002.086
plotPCA0.8220.0040.828
plotPathway1.1600.0001.163
plotRunPerCellQCResults3.1100.0003.115
plotSCEBarAssayData0.2240.0000.224
plotSCEBarColData0.2440.0040.248
plotSCEBatchFeatureMean0.3150.0080.324
plotSCEDensity0.2900.0040.295
plotSCEDensityAssayData0.2240.0000.224
plotSCEDensityColData0.30.00.3
plotSCEDimReduceColData1.1440.0081.154
plotSCEDimReduceFeatures0.5020.0000.503
plotSCEHeatmap1.0650.0001.067
plotSCEScatter0.4720.0080.481
plotSCEViolin0.3170.0040.322
plotSCEViolinAssayData0.4090.0000.409
plotSCEViolinColData0.3120.0000.312
plotScDblFinderResults39.814 0.40040.278
plotScanpyDotPlot0.030.000.03
plotScanpyEmbedding0.0300.0000.031
plotScanpyHVG0.0310.0000.031
plotScanpyHeatmap0.0320.0000.032
plotScanpyMarkerGenes0.0320.0000.032
plotScanpyMarkerGenesDotPlot0.0320.0000.032
plotScanpyMarkerGenesHeatmap0.0310.0000.031
plotScanpyMarkerGenesMatrixPlot0.0320.0000.032
plotScanpyMarkerGenesViolin0.0310.0000.031
plotScanpyMatrixPlot0.0270.0040.032
plotScanpyPCA0.0310.0000.032
plotScanpyPCAGeneRanking0.0320.0000.031
plotScanpyPCAVariance0.0310.0000.032
plotScanpyViolin0.0320.0000.031
plotScdsHybridResults11.945 0.09610.985
plotScrubletResults0.0290.0000.030
plotSeuratElbow0.0260.0040.030
plotSeuratHVG0.030.000.03
plotSeuratJackStraw0.0290.0000.030
plotSeuratReduction0.030.000.03
plotSoupXResults0.0010.0000.000
plotTSCANClusterDEG7.6090.0277.652
plotTSCANClusterPseudo3.0670.0083.081
plotTSCANDimReduceFeatures3.1030.0163.124
plotTSCANPseudotimeGenes2.9090.0082.921
plotTSCANPseudotimeHeatmap3.0860.0003.091
plotTSCANResults2.8840.0122.901
plotTSNE0.7300.0040.735
plotTopHVG0.5220.0040.527
plotUMAP7.5870.1367.730
readSingleCellMatrix0.0060.0000.005
reportCellQC0.2320.0040.236
reportDropletQC0.0260.0000.026
reportQCTool0.2460.0000.246
retrieveSCEIndex0.0330.0000.034
runBBKNN0.0000.0000.001
runBarcodeRankDrops0.5570.0000.559
runBcds3.1570.0202.143
runCellQC0.2370.0000.238
runComBatSeq0.6590.0000.661
runCxds0.7400.0400.782
runCxdsBcdsHybrid3.3060.0252.295
runDEAnalysis0.9170.0240.942
runDecontX8.1310.0248.168
runDimReduce0.6290.0000.631
runDoubletFinder22.884 0.04322.964
runDropletQC0.0210.0040.025
runEmptyDrops5.5220.0005.530
runEnrichR0.3210.0087.491
runFastMNN2.2470.0282.280
runFeatureSelection0.2800.0000.281
runFindMarker4.4610.0164.486
runGSVA0.9320.0080.942
runHarmony0.0490.0000.048
runKMeans0.5980.0040.603
runLimmaBC0.1020.0000.102
runMNNCorrect0.6700.0120.683
runModelGeneVar0.6000.0040.605
runNormalization0.7160.0000.718
runPerCellQC0.7240.0080.734
runSCANORAMA000
runSCMerge0.0040.0000.005
runScDblFinder28.838 0.14429.035
runScanpyFindClusters0.0300.0000.029
runScanpyFindHVG0.0290.0000.029
runScanpyFindMarkers0.0280.0000.029
runScanpyNormalizeData0.2790.0080.287
runScanpyPCA0.0290.0000.029
runScanpyScaleData0.0230.0040.026
runScanpyTSNE0.0260.0000.026
runScanpyUMAP0.0260.0000.026
runScranSNN1.0530.0351.090
runScrublet0.0270.0030.030
runSeuratFindClusters0.0260.0040.030
runSeuratFindHVG0.8930.0080.903
runSeuratHeatmap0.0260.0000.026
runSeuratICA0.0260.0000.025
runSeuratJackStraw0.0260.0000.026
runSeuratNormalizeData0.0270.0000.027
runSeuratPCA0.0260.0000.026
runSeuratSCTransform3.8090.0443.870
runSeuratScaleData0.0290.0000.029
runSeuratUMAP0.0250.0040.029
runSingleR0.0470.0000.048
runSoupX000
runTSCAN1.9420.0001.945
runTSCANClusterDEAnalysis2.1400.0202.165
runTSCANDEG2.0130.0242.042
runTSNE1.3350.0001.337
runUMAP7.5660.0167.588
runVAM0.7350.0080.744
runZINBWaVE0.0000.0040.005
sampleSummaryStats0.3960.0000.398
scaterCPM0.1500.0000.151
scaterPCA0.5600.0040.565
scaterlogNormCounts0.3070.0040.311
sce0.0240.0000.024
sctkListGeneSetCollections0.0970.0080.105
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment000
setRowNames0.1030.0000.103
setSCTKDisplayRow0.5160.0080.525
singleCellTK0.0010.0000.000
subDiffEx0.6270.0240.652
subsetSCECols0.2290.0030.234
subsetSCERows0.5510.0080.561
summarizeSCE0.0760.0000.077
trimCounts0.2850.0040.290